热门关键词:

载流磨损中的电弧热散失和对流换热有限元分析

  • 该文件为pdf格式
  • 文件大小:928.01KB
  • 浏览次数
  • 发布时间:2014-03-17
文件介绍:

本资料包含pdf文件1个,下载需要1积分

Arc and make serious material mechanical wear are interacted with each other damage and loss of friction pair and the decline in the friction and wear with electric current, which of current carrying ability. The interactions between the arc erosion and mechanical wear, and the causes of arc were analyzed. Based on finite element software ANSYS, the arc temperature fields of aluminum-stainless steel composite conductor rail and collector shoe used in metro power supply were simulated. The cooling process was calculated under different connection heat transfer coefficient. Heat conduction analysis shows that arc instantly produces high heat on friction pair ,but the highest temperature zone is relative in small size, and the temperature of heat affected zone is only a small percentage of maximum arc temperature. The greater the convection heat transfer coefficient, the smaller the area of heat affected zone of arc heat, and the lower the temperature of heat affect- ed zone. Arc erosion can be decreased by increasing the connection heat transfer coefficient of current wear system.载流摩擦磨损过程中电弧和磨损相互作用,使得摩擦副的材料损失严重,受流质量下降。分析电弧侵蚀和磨损之间的相互作用关系以及电弧的形成原因,基于有限元软件对地铁钢铝复合轨和受电靴在电弧下作用的温度场进行模拟,并分析其在不同对流换热系数条件下的散热过程。有限元热传导分析发现电弧在瞬间产生很高的热量,但温度最高的地方面积很小,在经过较长时间的传导,热影响区的温度也只占电弧最高温度的很小比例;对流换热系数越大,电弧热的热影响区面积就越小,而且温度也越低,可以通过加大载流摩擦系统的对流换热系数,降低电弧侵蚀对载流摩擦副的影响。

正在加载...请等待或刷新页面...
发表评论
验证码 验证码加载失败