热门关键词:

机械毕业设计-细石混凝土搅拌机设计(含全套CAD图纸+1.4万字说明书+外文翻译)

  • 该文件为rar格式
  • 文件大小:13.46MB
  • 浏览次数
  • 发布时间:2015-11-05
文件介绍:

本资料包含doc文件5个、dwg文件5个,下载需要50积分

机械毕业设计-细石混凝土搅拌机设计(含全套CAD图纸+1.4万字说明书+外文翻译)

机械毕业设计-细石混凝土搅拌机设计(含全套CAD图纸)文件目录:外文翻译.doc
文献综述.doc
细石混凝土搅拌机设计.doc
摘要目录.doc
总装配图+零件图.dwg
总装图-A0.dwg
毕业论文.doc
机架-A1.dwg
减速器部装-A0.dwg
料筒-A1.dwg


目 录
摘要 I
Abstract II
1 绪论 1
1.1 混凝土搅拌机械 1
1.2 混凝土搅拌机结构和工作原理 3
2传动部分设计 4
2.1电动机的选择 4
2.2传动比的分配 7
2.3计算传动装置的运动和动力参数 8
2.4第一级齿轮传动的设计 10
2.4.1材料的选择 10
2.4.2确定齿轮主要尺寸 13
2.5第二级齿轮传动的设计 16
2.5.1材料的选择 16
2.5.2确定齿轮主要尺寸 18
2.6减速器的润滑和密封 21
2.6.1传动的润滑 21
2.6.2轴承润滑 22
2.6.3密封装置 22
3 搅拌机的工作原理 23
3.1 搅拌机的结构组成 23
3.1.1搅拌机料筒 24
3.1.2搅拌机叶片 24
3.1.3搅拌机轴承 24
3.1.4搅拌机联轴器 27
3.1.5搅拌机轴 28
3.1.6搅拌机支架 34
3.2 工作过程 35
3.3电路控制 36
4.1搅拌机使用的注意事项 37
4.2搅拌机的日常保养 37
结论 39
致谢 40
参考文献 41

3 搅拌机的工作原理
3.1 搅拌机的结构组成
由机架、搅拌装置、传动系统、出料系统和电器控制系统所组成。机架是整个设备的支撑部件,由槽钢、角铁焊接而成。搅拌装置由搅拌筒、搅拌轴、搅拌铲片所构成,搅拌铲片固定在搅拌臂上,并且与搅拌轴成为一台,形成两组螺旋方向相反,但导程及螺旋升角相同的螺旋带状搅拌铲,搅拌铲与搅拌筒内壁的间隙均可调整。传动机构是由电动机、减速器、连轴器所组成。出料系统为手工卸料,由蜗轮、蜗杆、手轮所组成,电器控制系统具有启动、点动、停止、定时的功能。
3.1.1搅拌机料筒
料筒的几何容积由工作容积确定,主要考虑是否有足够的空间能够把相当于工作容积的混凝土搅拌得开,根据使用经验,国外一些资料的统计数值为搅拌容量是搅拌筒几何容积的75%左右。料筒的形状由大部分为圆柱体和一个长方体的端盖所组成。圆柱体的直径受机架底盘宽度的限制,过大则会造成料筒在机架上不稳定而晃动,过小则会造成不能充分利用底座的支撑能力。圆柱体的高度决定于工作容积大小和在机架上的布置位置。因此从总体布置要求来看,希望满载时料筒可以很稳定的固定在机架上,在搅拌过程中可以很稳定而获得较高的搅拌质量。在料筒的出口处,合理安排出料口的大小,以便可以充分快速的出料。

3.1.2搅拌机叶片
根据目前国内外卧轴式搅拌机叶片结构型式看,广泛采用铲片式,就单个叶片来说,它是一个平板,他通过搅拌臂与轴形成一体,使全部叶片呈螺旋线分布,叶片间没有直接联系,因而这种化整为零的结构方式具有很突出的优点。它使得叶片的加工安装非常方便,从而代替了加工安装要求高的螺旋带叶片。从磨损角度看,铲片式易受到局部磨损,这是因为物料与叶片之间的滑动逐步不均匀,而且波动,易形成卡料,使磨损加剧,搅拌效果有所下降,故从磨损和搅拌效果来看,铲片式比螺旋带式差。所以一般选择螺旋式叶片。又物料在拌筒内的运动,是由搅拌叶片推动的。虽然较大的叶片能够在搅拌过程中推动更多的物料,从而强化搅拌效果,但是较大的叶片也会阻碍物料在拌筒内的运动,降低搅拌质量和效率,同时也会导致搅拌功率的增大。目前,主叶片的尺寸都是根据搅拌半径计算确定的。

3.1.3搅拌机轴承
在许多场合,轴承的内孔尺寸已经由机器或装置的结构具体所限定。不论工作寿命,静负荷安全系数和经济性是否都达到要求,在最终选定轴承其余尺寸和结构形式之前,都必须经过尺寸演算。该演算包括将轴承实际载荷跟其载荷能力进行比较。滚动轴承的静负荷是指轴承加载后是静止的)或旋转速度非常低。在这种情况下,演算滚道和滚动体过量塑性变形的安全系数。大部分轴承受动负荷,内外圈做相对运动,尺寸演算校核滚道和滚动体早期疲劳损坏安全系数。只有在特殊情况时,才根据DIN ISO 281对实际可达到的工作寿命做名义寿命演算。对注重经济性能的设计来说,要尽可能充分的利用轴承的承载能力。要想越充分的利用轴承,那么对轴承尺寸选用的演算精确性就越重要。
静负荷轴承 计算静负荷安全系数Fs有助于确定所选轴承是否具有足够的额定静负荷。 FS =CO/PO 其中FS静负荷安全系数,CO额定静负荷[KN],PO当量静负荷[KN] 静负荷安全系数FS是防止滚动零件接触区出现永久性变形的安全系数。对于必须平稳运转、噪音特低的轴承,就要求FS的数值高;只要求中等运转噪声的场合,可选用小一些的FS;一般推荐采用下列数值: FS=1.5~2.5适用于低噪音等级 FS=1.0~1.5适用于常规噪音等级 FS=0.7~1.0适用于中等噪音等级。额定静负荷,在滚动体和滚道接触区域的中心产生的理论压强为: 4600 N/MM2 自调心球轴承 4200 N/MM2 其它类型球轴承 4000 N/MM2 所有滚子轴承在额定静负荷CO的作用下,在滚动体和滚道接触区的最大承载部位,所产生的总塑性变形量约为滚动体直径的万分之一。当量静负荷PO[KN]是一个理论值,对向心轴承而言是径向力,对推力轴承来讲是轴向和向心力。PO在滚动体和滚道的最大承载接触区域中心所产生的应力,与实际负荷组合所产生得应力相同。
PO=XO*F r +Ys * Fa[KN] 其中PO 当量静负荷,Fr径向负荷,Fa轴向负荷,单位都是千牛顿,XO径向系数,YO轴向系数
动负荷轴承 DIN ISO 281所规定的动负荷轴承计算标准方法的基础是材料疲劳失效,寿命计算公式为: L10=L=(C/P)P ,其中L10=L 名义额定寿命,C 额定动负荷 [KN] P 当量动负荷 [KN] P 寿命指数 L10是以100万转为单位的名义额定寿命,C 额定动负荷 [KN] P 寿命指数 L10是以100万转为单位的名义额定寿命。对于一大组相同型号的轴承来说,其中90%应该达到或者超过该值。额定动负荷C [KN]在每一类轴承的参数表中都可以找到, P=X*Fr+Y*Fa 其中:P当量动负荷,Fr径向负荷,Fa轴向负荷,单位都是千牛顿,X径向系数,Y轴向系数。不同类型轴承的X,Y值及当量动负荷计算依据,可在各类轴承的表格和前言中找到。球轴承和滚子轴承的寿命指数P有所不同。对球轴承,P=3 对滚子轴承,P=10/3。如果轴承动负荷的值及速度随时间而变化,那么在计算当量负荷时就得有相应的考虑。连续的负荷及速度曲线就要用分段近似值来替代。
滚动轴承的最小负荷过小的负荷加上润滑不足,会造成滚动体打滑,导致轴承损坏。
在本设计中我都选用深沟球滚子轴承就足以满足要求。

正在加载...请等待或刷新页面...
发表评论
验证码 验证码加载失败