热门关键词:

振动信号多通道同步整周期数据采集卡设计

  • 该文件为pdf格式
  • 文件大小:0.99MB
  • 浏览次数
  • 发布时间:2014-12-14
文件介绍:

本资料包含pdf文件1个,下载需要1积分

汽轮发电机组是国家电力系统中最主要的设备,正朝着大型化和自动化的方向发展1],对这类设备进行在线状态监测与故障诊断具有重要意义。机组在线状态监测与故障诊断中,转子的振动信号包含了机组运行状态信息,做故障分析和推理时需要有大量的振动信息,通过振动分析得出机组当前的工作状况,确定运行和维修计划[2 ;因此,需要根据转子振动信号的特点设计-款适用于转子振动信号采集的高速、可靠的数据采集卡来满足这种需求。

对于汽轮发电机组这类大型旋转机械设备,转子在运行过程中产生的振动信号既有-定的周期性,又具有-定的随机性,信号的频率分布很广泛,对这种信号进行采集时需要满足采样定理和整周期截断要求,以减少或避免由于频谱泄露和栅栏效应造成的影响;因此,可以对振动信号进行整周期采集来提高频谱分析的精度。整周期采集控制既可以通过软件实现,也可以通过硬件电路实现。基于软件的方法是指重采样法3],因为通常数据采集卡都不具备整周期采集控制的功能,所以需要对转子的键相信号和振动信号同时进行采集,然后在计算机中利用软件对采集的数据进行分析。根据计算得出的键相信号频率对振动信号数据进行整周期截断和插补运算,得到整周期采集的数据。这种方法虽然硬件成本较低,但是计算量大、实时性差。

基于硬件电路的方法主要是指设计专门的硬件电路,实现信号整周期采集的功能。这种专门的硬件电路包括两部分:键相倍频电路和数据采集电路。由于数据采集卡不具备整周期采集功能,因此需要另外设计键相倍频电路以产生键相倍频脉冲,用于触发整周期采集。键相倍频电路通常采用分立数字元器件l4 或者以单片机、复杂可编程逻辑器件(com-plex programmable logic device,简称CPLD)为核心的小型控制电路来实现。这样独立设计的键相倍频电路存在以下不足:a.电路比较复杂,可靠性较低,且设计调试不方便;b.增大了整周期采集系统的体积;C.电路开发的成本较高。

为了克服这些不足,笔者提出-种基于FPGA的小体积、紧凑型转子振动信号多通道同步整周期数据采集卡的设计方案。该方案采用FPGA技术设计了键相倍频电路和数据采集控制电路,将两种功能集成在-块采集卡上。该数据采集卡以乒乓操作的方式将A/D转换的数据保存在双口RAM 中,采用PC104总线协议[5]与主机进行通信,电路尺寸按照PC104总线规范设计。与传统的整周期数据采集电路相比,该方案具有体积小,集成度高,开发周期· 国家高技术研究发展计划(八六三”计划)资助项目(2009AA04Z410);国家 自然科学基金资助项目(11072214)收稿 日期:2011-04-18;修改稿收到 日期:2011-08-18第 1期 杨世锡,等:振动信号多通道同步整周期数据采集卡设计2.1.2 主要 芯 片选 型FPGA 主 控 芯 片 选 用 Altera公 司 型 号 为EP1C6Q240的FPGA,其内部拥有 5980个逻辑单元,2O个 12836位的RAM 块,外部管脚总数达240,最大可支持185个用户I/O;因此,该芯片非常适用于具有复杂逻辑及存储数据量大的高速数据采集系统。

A/D转换芯片采用两 片Maxim 公司的 14位 8通道高速A/D转换芯片Max1320,-个通道A/D转换可在1.6 s内完成,最多可同时对16个通道进行采集,16通道同时采集的最大采样频率达260 kHz。

该芯片的数字供电电压范围为3~5 V,故可以使用与FPGA相同的工作电压3.3 V,可以免去两者之间为了匹配电平而增加的电平转换芯片,减小电路开销,使电路更加精简和可靠。

2.2 数据采集卡的控制软件设计为了实现数据采集卡的各项功能,在完成硬件电路设计后还需要编写采集卡的控制软件。该软件在QUARTUS II环境中开发,采用拈化的设计思想和自顶向下的设计方式,各拈用VHDL语言编程,顶层文件用原理图的方式设计,在顶层文件中将各拈按照接口问的关系连接起来,编译成功后下载在采集卡上的配置芯片中。采集卡的控制软件模块划分如图3所示,包括键相倍频拈、定时控制模块、RAM 读写控制拈、双口RAM 存储器、增益控制 拈、A/D转换控制拈和 PC104总线通信拈。

FPGA功能模型键相倍频 l l定时控制 拈 拈RAM 读写控制拈配置及读写控制信号增益控制拈址信号 I 广-- A删/DN模块 存储器 l I控制数据 l L-- PC104总线通信拈图3 基于FPGA的多通道同步整周期数据采集卡控制软件方案各拈的功能如下:1)键相倍频拈对输入的键相信号进行数字倍频操作,输出的倍频信号用于触发振动信号的整周期采集,倍频系数可根据实际需要设定;2)定时控制拈实现采集卡的定时采集功能,即通过设置采样频率对信号进行固定频率的采样;3)RAM 读写控制拈,是整个控制软件的协调枢纽,主要对双端口RAM 存储器的A/D转换数据输入、输出进行控制;4)双口RAM 存储器是FPGA内部的两个存储宽度和深度为162048位的存储器宏拈,输入和输出端都有独立的控制信号线和地址信号线;5)增益控制拈对增益控制芯片进行控制,可选增益为 1,2,4,8;6)A/D转换控制拈对两片高速A/D转换芯片Max1320进行控制,A/D转换的控制时序采用状态机编程,主要状态的作用为复位、A/D芯片初始化、等待A/D启动信号、等待触发采样信号、向A/D芯片发送采样保持信号、等待A/D转换完毕信号、读取A/D转换数据和向RAM读写控制拈发送-次A/D转换完毕信号等;7)PC104总线通信拈定义了多个l6位的功能寄存器,包括数据寄存器、状态寄存器、工作模式寄存器、倍频系数寄存器、采样频率寄存器、采样点数寄存器和增益控制寄存器等,主机可以根据这些寄存器各 自的功能对其进行16位的读或者写操作,从而实现通信功能。

3 数据采集卡的关键技术3.1 基于 FPGA的键相倍频技术基于FPGA的整周期数据采集卡的关键技术之- 在于利用FPGA实现键相倍频算法,采用FPGA来实现该功能的优势在于:键相倍频的范围广,信号频率跟踪速度快,电路精简,编程、调试方便,开发效率高等。本设计采用VHDL语言描述键相倍频电路,电路的设计方案如图4所示,主要包括时钟同步处理器、分频器、加法计数器、线性预测器和减法计数器。

FPGA lk JiP:h黔aseSynK -I 、y 名分频器 i-图4 基于FPGA的键相倍频电路方案基于FPGA的键相倍频电路工作流程为:a.时钟同步处理器对输入的不规则键相信号 PhaseSig进行预处理,使其输出信号PhaseSyn的高电平脉冲28 振 动、测 试 与 诊 断 第 33卷率范围完全适用于汽轮发电机组转子振动信号的工 [4]作频段,可以广泛应用于汽轮发电机组的状态监测中。

5 结 论基于多通道、大容量、小型化和集成化的设计理念,设计了基于FPGA的转子振动信号多通道同步整周期数据采集卡及其测试软件。在设计开发的过程中,攻克了基于FPGA的键相倍频控制整周期采集技术、基于双口RAM 的大容量数据存取乒乓操作技术和基于PC104总线的数据通信技术等难关。

基于 FPGA 的键相倍频技术 ,使该数据采集卡非常适用于汽轮发电机组转子振动信号的整周期采集及转速测量,且具有相当高的采集精度。数据存取采取乒乓操作策略提高了数据存取的速度。采用PC104总线规范设计的数据采集卡有效减小了数据采集系统的电路体积,降低了系统功耗,提高了系统集成度,兼容工业控制计算机和PClO4嵌入式主板。经过测试表明,笔者设计的数据采集卡能够准确实现周期信号的多通道同步整周期等相位采集及键相信号频率测量功能,可 以广泛应用于汽轮发电机组转子振动信号的数据采集当中。

正在加载...请等待或刷新页面...
发表评论
验证码 验证码加载失败