热门关键词:

机械毕业设计-重载汽车后驱动桥结构设计(含全套CAD图纸+2.2万字说明书+外文翻译)

  • 该文件为rar格式
  • 文件大小:6.26MB
  • 浏览次数
  • 发布时间:2015-11-05
文件介绍:

本资料包含doc文件8个、dwg文件6个,下载需要50积分

机械毕业设计-重载汽车后驱动桥结构设计(含全套CAD图纸+2.2万字说明书+外文翻译)

机械毕业设计-重载汽车后驱动桥结构设计(含全套CAD图纸)文件目录:
鉴定意见表.doc
评阅表.doc
任务书.doc
设计说明书.doc
外文翻译.doc
摘要目录.doc
重载汽车后驱动桥结构设计.doc
主动齿轮-A3.dwg
装配图-A0.dwg
装配图-A0-修改.dwg
半轴-A2.dwg
半轴齿轮-A3.dwg
从动齿轮-A3.dwg
封面.doc


目 录
摘要 Ⅰ
ABSTRACT Ⅱ
1 引言 1
2 驱动桥结构方案分析 1
3 主减速器设计 4
3.1 主减速器的结构形式 4
3.1.1 主减速器的齿轮类型 4
3.1.2 主减速器的减速形式 4
3.1.3 主减速器主,从动锥齿轮的支承形式 4
3.2 主减速器的基本参数选择与设计计算 5
3.2.1 主减速器计算载荷的确定 5
3.2.2 主减速器基本参数的选择 7
3.2.3 主减速器圆弧锥齿轮的几何尺寸计算 9
3.2.4 主减速器圆弧锥齿轮的强度计算 11
3.2.5 主减速器齿轮的材料及热处理 17
3.2.6 主减速器轴承的计算 17
4 差速器设计 23
4.1 对称式圆锥行星齿轮差速器的差速原理 23
4.2 对称式圆锥行星齿轮差速器的结构 24
4.3 对称式圆锥行星齿轮差速器的设计 25
4.3.1 差速器齿轮的基本参数的选择 25
4.3.2 差速器齿轮的几何计算 27
4.3.3 差速器齿轮的强度计算 29
5 驱动半轴的设计 30
5.1 全浮式半轴计算载荷的确定 31
5.2 全浮式半轴的杆部直径的初选 32
5.3 全浮式半轴的强度计算 32
5.4 半轴花键的强度计算 32
6 驱动桥壳的设计 33
6.1 铸造整体式桥壳的结构 34
6.2 桥壳的强度校核 35
结 论 36
参考文献 37
致 谢 38
附 录 英文文献翻译 39

3.2.4 主减速器圆弧锥齿轮的强度计算
在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式及其影响因素。
1) 齿轮的损坏形式及寿命
齿轮的损坏形式常见的有轮齿折断、齿面点蚀及剥落、齿面胶合、齿面磨损等。它们的主要特点及影响因素分述如下:
(1)轮齿折断
主要分为疲劳折断及由于弯曲强度不足而引起的过载折断。折断多数从齿根开始,因为齿根处齿轮的弯曲应力最大。
①疲劳折断:在长时间较大的交变载荷作用下,齿轮根部经受交变的弯曲应力。如果最高应力点的应力超过材料的耐久极限,则首先在齿根处产生初始的裂纹。随着载荷循环次数的增加,裂纹不断扩大,最后导致轮齿部分地或整个地断掉。在开始出现裂纹处和突然断掉前存在裂纹处,在载荷作用下由于裂纹断面间的相互摩擦,形成了一个光亮的端面区域,这是疲劳折断的特征,其余断面由于是突然形成的故为粗糙的新断面。
②过载折断:由于设计不当或齿轮的材料及热处理不符合要求,或由于偶然性的峰值载荷的冲击,使载荷超过了齿轮弯曲强度所允许的范围,而引起轮齿的一次性突然折断。此外,由于装配的齿侧间隙调节不当、安装刚度不足、安装位置不对等原因,使轮齿表面接触区位置偏向一端,轮齿受到局部集中载荷时,往往会使一端(经常是大端)沿斜向产生齿端折断。各种形式的过载折断的断面均为粗糙的新断面。
为了防止轮齿折断,应使其具有足够的弯曲强度,并选择适当的模数、压力角、齿高及切向修正量、良好的齿轮材料及保证热处理质量等。齿根圆角尽可能加大,根部及齿面要光洁。
(2)齿面的点蚀及剥落
齿面的疲劳点蚀及剥落是齿轮的主要破坏形式之一,约占损坏报废齿轮的70%以上。它主要由于表面接触强度不足而引起的。
①点蚀:是轮齿表面多次高压接触而引起的表面疲劳的结果。由于接触区产生很大的表面接触应力,常常在节点附近,特别在小齿轮节圆以下的齿根区域内开始,形成极小的齿面裂纹进而发展成浅凹坑,形成这种凹坑或麻点的现象就称为点蚀。一般首先产生在几个齿上。在齿轮继续工作时,则扩大凹坑的尺寸及数目,甚至会逐渐使齿面成块剥落,引起噪音和较大的动载荷。在最后阶段轮齿迅速损坏或折断。减小齿面压力和提高润滑效果是提高抗点蚀的有效方法,为此可增大节圆直径及增大螺旋角,使齿面的曲率半径增大,减小其接触应力。在允许的范围内适当加大齿面宽也是一种办法。
②齿面剥落:发生在渗碳等表面淬硬的齿面上,形成沿齿面宽方向分布的较点蚀更深的凹坑。凹坑壁从齿表面陡直地陷下。造成齿面剥落的主要原因是表面层强度不够。例如渗碳齿轮表面层太薄、心部硬度不够等都会引起齿面剥落。当渗碳齿轮热处理不当使渗碳层中含碳浓度的梯度太陡时,则一部分渗碳层齿面形成的硬皮也将从齿轮心部剥落下来。
(3)齿面胶合
在高压和高速滑摩引起的局部高温的共同作用下,或润滑冷却不良、油膜破坏形成金属齿表面的直接摩擦时,因高温、高压而将金属粘结在一起后又撕下来所造成的表面损坏现象和擦伤现象称为胶合。它多出现在齿顶附近,在与节锥齿线的垂直方向产生撕裂或擦伤痕迹。轮齿的胶合强度是按齿面接触点的临界温度而定,减小胶合现象的方法是改善润滑条件等。
(4)齿面磨损
这是轮齿齿面间相互滑动、研磨或划痕所造成的损坏现象。规定范围内的正常磨损是允许的。研磨磨损是由于齿轮传动中的剥落颗粒、装配中带入的杂物,如未清除的
型砂、氧化皮等以及油中不洁物所造成的不正常磨损,应予避免。汽车主减速器及差速器齿轮在新车跑合期及长期使用中按规定里程更换规定的润滑油并进行清洗是防止不正常磨损的有效方法。
汽车驱动桥的齿轮,承受的是交变负荷,其主要损坏形式是疲劳。其表现是齿根疲劳折断和由表面点蚀引起的剥落。在要求使用寿命为20万千米或以上时,其循环次数均以超过材料的耐久疲劳次数。因此,驱动桥齿轮的许用弯曲应力不超过210.9N/mm .

正在加载...请等待或刷新页面...
发表评论
验证码 验证码加载失败