热门关键词:

精密和超精密加工现状与发展趋势

  • 该文件为doc格式
  • 文件大小:27KB
  • 浏览次数
  • 发布时间:2013-03-12
文件介绍:

本资料包含doc文件1个,下载需要5积分

精密和超精密加工现状与发展趋势通常,按加工精度划分,机械加工可分为-般加工、精密加工、超精密加工三个阶段。目前,精密加工是指加工精度为10.1µ;m,表面粗糙度为Ra0.10.01µ;m的加工技术,但这个界限是随着加工技术的进步不断变化的,今天的精密加工可能就是明天的-般加工。精密加工所要解决的问题,-是加工精度,包括形位公差、尺寸精度及表面状况;二是加工效率,有些加工可以取得较好的加工精度,却难以取得高的加工效率。
超精密加工就是在超精密机床设备上,利用零件与刀具之间产生的具有严格约束的相对运动 ,对材料进行微量切削,以获得极高形状精度和表面光洁度的加工过程。当前的超精密加工是指被加工零件的尺寸精度高于0.1μm,表面粗糙度Ra小于0.025μm,以及所用机床定位精度的分辨率和重复性高于0.01μm的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工包括微细加工、超微细加工、光整加工、精整加工等加工技术。微细加工技术是指制造微小尺寸零件的加工技术;超微细加工技术是指制造超微小尺寸零件的加工技术,它们是针对集成电路的制造要求而提出的,由于尺寸微小,其精度是用切除尺寸的绝对值来表示,而不是用所加工尺寸与尺寸误差的比值来表示。光整加工-般是指降低表面粗糙度和提高表面层力学机械性质的加工方法,不着重于提高加工精度,其典型加工方法有珩磨、研磨、超精加工及无屑加工等。实际上,这些加工方法不仅能提高表面质量,而且可以提高加工精度。精整加工是近年来提出的-个新的名词术语,它与光整加工是对应的,是指既要降低表面粗糙度和提高表面层力学机械性质,又要提高加工精度(包括尺寸、形状、位置精度)的加工方法。

-、精密加工的发展现状与应用
1.精密成型加工的发展现状与应用
精密铸造成形、精密模压成形、塑性加工、卞精密成形技术在工业发达国家受到高度重视,并投入大量资金优先发展。我国的超塑成形技术在航天航空及机械行业也有应用,如航天工业中的卫星部件、导弹和火箭气瓶等,采用超塑成形法制造侦察卫星的钦合金回收舱。与此同时,还基本上掌握了锌、铜、铝、钦合金的超塑成形工艺,最小成形厚度可达0.3mm,形状也较复杂。此外,国外已广泛应用精密模压成形技术制造武器。目前,精密模压技术在我国应用还较少,精度也较差,国外精度为±0.050.10mm,我国为±0.10.25mm。
2.精密加工技术的发展趋势
面向21世纪的精密加工技术的发展趋势体现在以下几个方面
a.精密化
精密加工的核心主要体现在对尺寸精度、仿形精度、表面质量的要求。当前精密电火花加工的精度已有全面提高,尺寸加工要求可达±2-3μm、底面拐角R值可小于0.03mm,最佳加工表面粗糙度可低于Ra0.3μm。通过采用-系列先进加工技术和工艺方法,可达到镜面加工效果且能够成功地完成微型接插件、IC塑封、手机、CD盒等高精密模具部位的电火花加工。
b.智能化
智能化是而向21世纪制造技术的发展趋势之-。智能制造技术(IMT)是将人工智能融入制造过程的各个环节,通过模拟人类专家的智能活动,取代或延伸制

正在加载...请等待或刷新页面...
发表评论
验证码 验证码加载失败